Posts

 

Ben Wernick – Managing Director Wernick Buildings

 

In recent news, concerns have arisen over the safety of school buildings in the UK constructed with reinforced autoclaved aerated concrete (RAAC). This urgent situation calls for immediate action to ensure the health and safety of students and staff. Guidance issued by the Department for Education (DfE) advised that “any space or area with confirmed RAAC should no longer be open without mitigations in place”.

 

This highlights the issue that some schools will have to either delay reopening or close and urgent plans to be put in place to overcome these challenging times. With schools hoping to reopen after the summer holiday, action must be taken almost immediately for those affected.

It is notable that the modular construction industry stands as a reliable and well-positioned alternative that provides enhanced safety, durability, and sustainability in building and developing educational units. Modular buildings exhibit exceptional attributes, notably in safeguarding the security and welfare of their occupants. Unlike traditional construction methods, modular buildings are built in controlled factory environments, adhering to strict quality control protocols. This means that safety measures, such as structural integrity and fire resistance, are rigorously assessed and implemented during the manufacturing process. Moreover, as modular structures are designed to be transported and installed on-site, they require stronger and more resilient building components to withstand transportation stresses. This heightened attention to durability offers additional reassurance regarding the structural soundness of modular buildings.

Efficient construction time

Time is of the essence when dealing with urgent matters such as the closure of your school. Modular construction provides a significant advantage by significantly reducing construction timelines. Since modules are created off-site concurrently with site preparation, projects can be completed much faster than traditional construction. This expeditious approach minimises potential interruptions to academic activities, ensuring students can return to their studies as quickly as possible.

Additionally, the fabrication of modular buildings tends to be less disruptive than on-site construction. Noise and other disturbances are kept to a minimum, further supporting an uninterrupted learning environment during the construction process.

Modular construction not only saves time but also offers cost-effective solutions. The controlled environment of modular factories minimises material wastage and reduces the need for rework. With fewer delays and expenses associated with inclement weather, modular construction projects are more likely to adhere to budgetary constraints. Furthermore, modular buildings are designed to be easily expanded or reconfigured, allowing educational institutions to adapt to evolving needs and enrolment fluctuations. This adaptability provides long-term cost savings by avoiding the need for major renovations or additional construction in response to changing circumstances.

 

Sustainability and environmental responsibility

At Wernick Buildings we constantly strive to improve our environmental practices. Our controlled factory environment allows for efficient use of energy and resources, limiting waste generation. Additionally, sustainable materials can be incorporated during manufacturing, ensuring a reduced carbon footprint.  Furthermore, modular buildings can be designed to be energy-efficient with the incorporation of green technologies such as solar panels, rainwater harvesting systems, and LED lighting. These features reduce operational costs and promote sustainability by minimising resource consumption and carbon emissions.  In response to the recent news regarding the closure of school buildings built with potentially unsafe construction materials, the modular construction industry stands as an ideal solution, armed with its focus on safety, speed, cost-efficiency, and environmental responsibility. We have a range of high-quality, flexible modular classroom blocks that are ready to go, offering a quick and efficient solution for your educational space. Our modular buildings are constructed with cutting-edge materials, exceeding safety standards and are built to last.


Wernick Buildings are dedicated to supporting schools and safeguarding the well-being of both students and staff.

  

To advance your educational space, contact Wernick Buildings today.

 

CLICK HERE TO VISIT THE WERNICK WEBSITE


More than 100 schools in England are grappling with an urgent problem due to structural concerns, following the dramatic closure of buildings constructed with reinforced autoclaved aerated concrete (RAAC). But while this situation presents a significant challenge, it also offers a unique opportunity for the Government and the construction industry to reevaluate their approach to building sustainability and safety, by using low-carbon alternatives that can revolutionise the way we construct our schools and other vital structures writes Tony Sheridan, Group Commercial Director for Cemfree.

When the government ordered the closure of these schools just days before the autumn term was set to begin, educators, parents, and students found themselves in a state of flux. Alternative learning solutions, including remote learning and temporary classrooms, became the immediate response to the crisis sparking concerns and criticism.

While this is an understandable reaction, at the heart of this issue lies the critical importance of responsible design and the correct choice of appropriate construction materials. It underscores the significance of using the right product in the right place and keeping design at the forefront of construction decisions.

A crucial consideration should have been the acceptable design life of the structures. If these buildings were originally designed for a 30-year lifespan, it was unrealistic to expect them to last 50 years without issues. If lessons are to be learned we must be mindful of these factors during future design phases and avoid overstretching the longevity of our structures.

Another factor to consider as we contemplate rebuilding these educational institutions, is a pressing environmental concern – embodied carbon. The concrete originally used in these structures, and the replacement materials chosen, play a pivotal role in determining their environmental footprints and this is where products such as Alkali-Activated Cementitious Materials (AACMs) can make a huge difference.

The issue of embodied carbon, which refers to the total carbon emissions associated with a building material’s production, transportation, and installation, cannot be overlooked. When considering replacement materials, it’s imperative to assess the environmental impact.

Perhaps then it is an opportunity to look at innovative alternatives like AACM’s, which are readily available and have been tested following rigorous research and development programmes? While concrete is undeniably an excellent construction material, its traditional usage has been heavily cement-dependent, contributing to a colossal carbon footprint – 850kgs per tonne as stated by MPA.

However, AACMs such as Cemfree are revolutionising the construction landscape, allowing designers to maintain the integrity of concrete while slashing its carbon footprint by up to 85% compared to Portland Cement (PC). Embracing AACMs like Cemfree could catalyse a paradigm shift in the construction of critical structures like schools and hospitals, ushering in a sustainable future.

At Cemfree we are committed to ensuring that our products are specified and used correctly, ensuring structural integrity and safety. We work closely with architects, specifiers, contractors, and other stakeholders to guide them through the process from start to finish. Our rigorous approach ensures that Cemfree is not only chosen but also applied appropriately, maximising its environmental benefits.

The path to creating safe, ultra-low carbon buildings lies in collaboration. Clients, specifiers, contractors, and material providers must work together to design and construct sustainable structures that are both environmentally friendly and structurally sound. This collaborative effort should span the entire construction process, from initial design to final implementation.

The situation with schools in England serves as a pivotal moment, highlighting the importance of responsible design, sustainability, and material selection in construction projects. It offers us a choice – to rebuild with materials that are both resilient and environmentally conscious or continue to use very carbon intensive materials. Could this be the catalyst for a transformation in our commitment to constructing safer, greener, and more sustainable educational spaces for generations to come?

As we rebuild our schools, let’s not just reconstruct buildings but also reshape the future. The opportunity for change is now, and together, we can pave the way towards a more sustainable tomorrow for our schools and beyond.

 

www.cemfree.com