By Bill Sinclair, technical director, Adveco.

The most consistent issue we see in school hot water systems is oversizing, whether through a lack of understanding of application design or concerns over providing suitable backup to ensure system continuity. The result of oversizing is however always the same, unnecessary capital costs for system supply, installation and ongoing excess operational costs associated with higher energy demands and therefore greater carbon emissions.  As schools plan to adopt greener building operations, replacing old gas-fired systems with like-for-like electric is another guaranteed way to gain an oversized system, but can also lead to undersizing if storage is not large enough to account for low, slow heating associated with heat pump based electric systems. Getting that balance right is critical as per kW price of electricity remains much higher than that of gas. Plus, if not optimised, the system will generate excess capital costs in terms of size and number of water heating appliances and complexity of installation. That in turn can also become more time-consuming and disruptive, a cause for concern if refurbishment work is scheduled into the narrow window afforded by the school holidays. More importantly, if the new electric system is oversized the required amperage could exceed a building’s available electrical supply. Bringing new supply in means excavating, possibly as far as the substation, which will see cost soar, or even stall the project.  This can best be avoided by collecting live onsite data. A valuable, non-invasive, and low-cost exercise, it should be undertaken to assess actual usage, including time and duration of peak demands which is critical for correct sizing. When assessing a school’s domestic hot water (DHW) usage, it is important to also establish basic information on energy sources, be they gas or electric, planned use of renewables such as heat pumps or solar thermal and the level of system redundancy and backup. This helps steer the design of the replacement system.

This approach has already been applied to several public sector sites in the UK where there is a strong impetus from the government for properties to be rapidly decarbonised in line with net zero strategies. Data collected by Adveco has enabled our application design team to provide recommended alternatives that avoid common issues arising from oversizing.

One recently assessed dormitory site was operating two 50kW output gas-fired water heaters and a pair of 140 kW boilers. Replacement plans included making use of two additional electric boilers with an air source heat pump (ASHP) to heat the building. Live metering indicated that the property exhibited an average daily usage of 1793 litres with a maximum daily recorded usage of 2407 litres, averaging out to 2003 litres. The single peak, spread between 7 am and 10 am, was contrary to the perceived dual morning and evening peak. With a long, low single morning peak the theoretical design day hot water consumption was established at 2789 litres.


On this basis, with a 20% uprate added to ensure extraordinary peak demands would be accommodated in the system design, requirements can be met by a 24kW electric system with 250-litre storage. This assumes 40°C preheat feed from the air source heat pump, 63°C storage and supply at 60°C. The recommendation was for a 500L twin coil cylinder, with the bottom half preheated by the ASHP and the top half heated by a 24kW electric boiler, such as Adveco’s ARDENT. The storage cylinder is derated by 50% as only the top half is guaranteed to store water at a usable 60°C.  A smaller boiler could be specified and would cope as well, but without the ASHP preheat the full 24kW would be required ramping up operational costs.

The new system will have an estimated annual consumption of 616,564 litres. With an estimated 16,544 kWh thermal energy demand for the year, carbon emissions fall from 8340 kg/annum for the gas-fired system to 3250kg/annum for the new electric heated system. A carbon reduction of 5090 kg/annum. However, annual electric running costs, despite a 25-35% offset in energy from the heat pump, would be an estimated £2813, compared to lower-priced gas costs of £689.

Replacing gas-fired water heating with an electric system still has several cost implications. Correct sizing with metered data can reduce the costs of purchasing and installing new hardware, potentially saving tens of thousands of pounds depending on the scale and complexity of the DHW application. Excavation works to bring in increased electric supply though can quickly raise project costs to anything as high as £500,000 if in a city location! So optimising designs to avoid this is critical.  Operational costs do however climb and will continue to do so while grid electric prices remain much higher than those of gas grid supplies. The application of renewables including heat pumps and solar thermal can reduce, but not completely offset those direct electric costs.

The advantage is clearly defined in the reduction of carbon emissions, and, as work continues to decarbonise the electricity grid, the emission reduction figures supplied in the new system design should improve considerably, adding further environmental value to the system over the course of its operational lifespan. Decarbonisation of hot water still comes with implicit operational costs. Metering helps to clarify this and put a real number on the ledger that can be factored into a school’s decarbonisation strategy.


CLICK HERE TO VISIT THE ADVECO WEBSITE


 

The IAQ multi-sensor from Siemens Smart Infrastructure offers a key contribution to room automation with a simple insight into room conditions that helps to prioritise indoor air quality and create a healthy and productive environment.

The sensor tracks seven key environmental factors in a single wall-mounted unit: fine dust (PM2.5), volatile organic compounds (VOCs), carbon dioxide, relative humidity, temperature, light and noise (dBA). The IAQ offers the same level of accuracy as individual room sensors, with an intuitive colour indicator to identify air quality status. Transparency in air quality is further ensured through an easy-to-read LED display, with a simplistic design that offers clear and quick indication of air conditions. This simplicity is carried through to the touch-sensitive buttons which allow easy scrolling through the sensor’s parameters.

The unit assists building owners and operators in meeting a range of environmental building regulations and certification requirements including WELL, RESET, LBC, FITWEL and LEED.

In addition to monitoring the air quality, the noise sensor (no recording) can detect the number of people in a meeting room.

 

Studies have shown that poor ventilation can account for more than 50 percent of all sick leave with poor air quality also perceived to reduce work performance by over 9 percent. The IAQ is one of a range of products from Siemens designed to optimise indoor air quality which is some 2.5 times more polluted than typical outdoor air. This range also includes Connect Box, an open and easy-to-use IoT solution which manages small to medium-sized buildings and can be simply connected to operate with the IAQ via wireless or wired protocols (BACnet and LoRaWAN).

Ease of installation is ensured through the sensor being suitable for use with most commercially available recessed conduit boxes.

Working together, the IAQ multi-sensor and Connect Box offer a highly efficient monitoring solution to increase health and comfort in small to medium-sized buildings without the need of a BMS system.


CLICK HERE For further information on Siemens Building Products

  

For further information on Siemens Smart Infrastructure, PLEASE CLICK HERE

 


 

Leading natural and hybrid ventilation solutions manufacturer Passivent recently played its part in the creation of a specialist school located in Sunderland, providing a comprehensive range of its high-performance natural ventilation products, tailored for the SEND environment with the whole building in mind.

Passivent provided Sunningdale School with its unique thermal acoustic Aircool® window ventilators, Litevent Airstract® rooflight/ventilators and Airscoop® roof ventilation terminals which were used throughout the school in classrooms, corridors and halls.  Working closely with Sunderland City Council at the early design stage, Passivent proposed the use of a natural ventilation strategy which would not only provide effective cross ventilation in the classrooms but one which would also reduce noise pollution during operation – a critical consideration for a SEND environment.  By utilising natural ventilation, the school will also benefit from reduced energy usage without the need for mechanical fans.
Two of Passivent’s thermal acoustic window Aircool units were installed vertically in each classroom for the fresh air intake. These units allow the incoming air to be warmed via heater coils, with acoustic baffles helping to minimise the noise. The used air is then exhausted at the back of the classroom at a slightly higher level through the two standard window Aircool units installed horizontally.

A number of Litevent Airstract rooflight/ventilators were also specified and installed along the school’s corridors, with the roof lights providing a great source of natural daylight and the Airstract terminal function in this combined unit providing controllable natural ventilation. Passivent’s Litevent system reduces the need for artificial lighting thereby reducing further energy consumption.  Installed in both the dining and main hall are multiple Airscoop roof ventilation terminals which ventilate the large open spaces, providing fresh air whilst displacing any stale used air. The Airscoop has an optimised segmented design that delivers maximum airflow capacity and its patented double bank louvres provide Class A 100% rain rejection so that the building can be fully ventilated regardless of weather conditions.

To easily control the entire ventilation system, which is split into 21 zones, Passivent’s iC8000 Controller has been installed with seven panels in four different locations across the school. These will be used to modulate the natural ventilation system, monitoring carbon dioxide levels as well as internal and external temperatures to ensure an optimal learning environment at all times.  Sunningdale School is the only school of its kind in Sunderland, specialising in teaching children with severe and multiple learning difficulties aged between 2 and 11. The £13.3 million new build, which was designed with specialist therapy provisions including nine sensory rooms, opened its doors in September 2022 as part of Sunderland City Council’s £45 million programme to update schools that deliver life-changing facilities for young people.


CLICK HERE To find out more

or call 01732 850 770

or CLICK HERE to email passivent

Balancing effective natural ventilation with reduced noise pollution poses specifiers with a challenge, but leading product manufacturer Passivent has the perfect solution in the form of its patented SoundScoop® acoustic air transfer unit.

 

Passivent’s SoundScoop offers superior natural ventilation whilst simultaneously reducing sound transfer between noisy and noise-sensitive areas thanks to its patented internal lining and ribbed design. It has been designed in association with Arup in a collaborative approach to acoustic design, natural ventilation performance and product development.

The innovative design of the SoundScoop system allows air to pass through freely whilst sound waves are reflected and absorbed by the unit’s lining. The system targets mid-frequency sounds such as speech and footfall, helping eliminate noisy distractions and providing greater privacy.

The combination of low airflow resistance with high-performing acoustic attenuation, provides greater crossflow ventilation between internal spaces of buildings, allowing more schemes to adopt a natural ventilation system without the worry of excessive noise travelling from room to room. The SoundScoop system is particularly suited for education, residential and hotel projects, as well as commercial environments that are adjacent to noisy spaces, such as cellular offices, as it can reduce speech noise levels by up to 50%.

SoundScoop has been tested for acoustic performance and complies with BB93 (Acoustic Design of Schools – a design guide), Priority Schools Output Specification for Acoustic Design, BS8233 (Sound Insulation and Noise reduction for Building Code of Practice) and Building Regulations Part F (Ventilation). The system boasts a lightweight design, with units ranging from 3kg to 18.3kg for ease of both installation and transportation, and with a variety of different sizes available, is ideally suited to a range of different applications.

 


CLICK HERE to find out more

call 01732 850 770

or CLICK HERE to email Projects at Passivent

Follow us on LinkedIn to be kept up to date with the latest news.

 


 

Jonathon Hunter Hill

Product Manager – AirMaster SMVs

 

In most Romance languages, the word for insulation translates directly as isolation. On the road to Net Zero, one of the UK’s primary challenges is to cut heat loss from buildings by isolating the inside from the outside. Increases in air tightness, and reductions in U-values and thermal bridging, will continue to reduce heat loss from buildings. But the increased air tightness creates a particular problem: we are aiming to eliminate natural air exchange between indoors and outdoors to reduce heat loss, cutting the primary method of ventilation that the UK has long relied upon.

Ventilation is required to maintain good indoor air quality in buildings, whether it be reducing the humidity to prevent damp and mould, or to minimise CO2 levels to prevent inhibition of brain function. This creates a different problem: by extracting air from buildings, we also extract heat, which must then be made up from other sources. This is a vicious circle in that we have reduced heat loss through natural air exchange, but may incur heat loss through mechanical ventilation. In buildings with relatively low occupancy densities, such as domestic environments, a low rate of air change per hour (ACH-1) is required, for example 2-4 ACH-1 for living rooms. But in buildings with relatively high occupancy densities, such as offices and schools, the ventilation rate required to maintain good indoor air quality is 4-6 ACH-1, so a great deal of heat can be lost.

The UK has long been in the habit of using natural ventilation for buildings, but Net Zero put paid to that. The solution is to recover the heat from the air using mechanical ventilation with heat recovery (MVHR). In Europe, this is the de facto ventilation solution for new buildings. Indeed, in European deep refurbishments and new builds this is typically a legal requirement. MVHR extracts stale air from rooms, passing it through a heat exchanger. At the same, fresh air is drawn in from outside and is passed through the heat exchanger, the two pathways being separated by a hydraulic break. Heat flows from hot to cold, so the stale air deposits its heat into the heat exchanger, which is picked up by the colder fresh air, warming it before it enters the room. This can reduce heat demand by up to 90%.

When it comes to the UK’s new build schools, in the School Output Specification (Technical Annex 2H: Energy) the Department for Education has set minimum energy intensity targets of 52 / 67 kWh/m2 (primary and special educational needs / secondary schools respectively). The Output Specification indicates that heating should comprise 8 kWh/m2 of this target. Heat load (heat loss), therefore, must be absolutely minimal in order to meet this criterion. Using natural, hybrid, or mixed mode ventilation solutions, this target simply will not be met. It can only be achieved using MVHR, and MVHR with a low specific fan power (SFP) at that.

Factoring in both electrical consumption, heat demand associated with ventilation, fabric losses, and internal gains, a classroom with decentralized MVHR will have a heat load of approximately 600 kWh/year. Comparatively, a classroom with the best hybrid solution would have a heat load of approximately 3,500 kWh/year. This is a factor of six different, entirely due to heat recovery, which in this case will recover approximately 84% of the classroom’s heat. (https://bit.ly/natvsmvhr)

In many cases, schools are being designed to use air source heat pumps combined with solar PV panels for generation. If we assume that the heat pump has an SCOP of 3.2 and that PV covers and average of 50% of the building’s electricity demand, the performance gap narrows. However, the outstanding heat load is still approximately a factor of five times higher when using hybrid ventilation as opposed to decentralized MVHR. The result of a reduced heat load is a reduced requirement for both heat plant and renewable energy generation, resulting in net lower lifecycle carbon emissions and may result in lower capital costs.

In specifying ventilation units of any type, I strongly encourage designers to consider not only the electrical energy, but also the heat loss associated with the type of ventilation considered; to take a holistic approach to ventilation. MVHR inevitably has a higher electrical demand, but will slash the building’s heat demand.

When we consider the building fabric to meet our Net Zero goals, it is essential that we consider minimising heat loss through ventilation as a core element of said fabric. This will only be achieved with good quality MVHR if we are to satisfy the requirements for energy intensity and the indoor air quality. With the rise in energy prices, we must reconsider CAPEX vs OPEX. We can learn a great deal from the more mature energy markets of Europe.

 

ElectricalDirect has added more products to its air purification range to help education specifiers and facilities managers protect indoor spaces against harmful germs and unpleasant odours.

 

Suitable for public and commercial spaces, ElectricalDirect has added the Vent-Axia PureAir Room Air Purifier to its range. This advanced multistage air cleaning system is able to remove 99.9% of airborne particles including COVID-19, viruses and bacteria.

The Vent-Axia PureAir Room Purifier also features a six-stage filtration system: a washable pre-filter, an H13 HEPA filter, an activated carbon filter, a cold catalyst filter, ultraviolet light, and an ionizer. With a capacity of up to 30m2 and a maximum noise level of 45d(B)A, the user will not be disturbed by loud background noise.

This portable and lightweight product also benefits from an auto mode that sets airflow based on the indoor air pollution, air quality display and a timer to allow you to set the unit to run for periods up to eight hours. Additionally, it features three speeds which can be manually or automatically controlled, meaning it can be easily adjusted for the level of usage required.

For increased functionality, ElectricalDirect also stocks the Vent Axia PureAir Room Air Purifier with Smart App Control which can be operated by its SmartLife app. This feature gives the ability to link multiple air purifiers to one app and remotely control each unit, speeding up the process of maintaining larger properties.

ElectricalDirect’s line up also includes the super slim air purifiers from AirX Pro, which is a medical grade air purifying system that removes 99.9% allergens and 93.3% of odours, from airborne viruses and dust mites to organic fumes, tobacco smoke, traffic pollution and more.

Carrie Earl, Category Manager at ElectricalDirect, said: “As part of our promise to offer a huge range of products, we are pleased to have increased our portfolio of air purifiers to meet the growing demand for improved air quality. These are excellent solutions to providing healthier indoor environments, especially as we approach winter and consider the health implications related to poor air quality.”

Specialist online retailer, ElectricalDirect has over 12,000 products in stock including everything from sockets, switches and cable management, to hand dryers and panel heaters. Education specifiers and facilities managers can choose from a range of flexible delivery options to meet the needs of their busy schedules, including free next day delivery on orders over £45 ex VAT, same day delivery to postcodes in selected areas of London and the East of England, as well as click and collect from 6,500 pick up points across the UK.

 

To find out more about ElectricalDirect, CLICK HERE

 

As the electricity grid becomes cleaner and the potential for long-term carbon savings grows, school hot water systems in the UK are seeing an increased transition towards electric-only designs. Through the application of simple to install, cost-effective, and familiar technology they deliver lower carbon emissions in line with government calls for net zero, address regulatory changes on new gas connections and remove NO2 for improved indoor air quality (IAQ) and occupant comfort. However, there is also a growing realisation that this approach is suffering more acutely from the detrimental issue of rapid limescale generation in hard water areas.

While an optimised electric based system will be future-proofed through the incorporation of heat pump technology, electrical resistive heating remains a necessary component of many systems to deliver the high-grade heat required for domestic hot water (DHW) applications. Typically, the resistive heating is provided ‘directly’ to the hot water cylinder via an electrical immersion heater.
Electric immersion heaters have been used for many years as backup heat sources in boiler-fed indirect cylinders, a lower-demand schools applications for which they are perfectly suitable. However, direct immersion heating is not advised as a primary heat source in hard water areas for education estate applications where delivering reliability is an essential business demand.

Scale of the problem
Approximately 65% of the UK mains water is classed as ‘hard’ due to the presence of calcium. When ‘hard’ water is heated the calcium precipitates out of the solvent as calcium carbonate, clumping together and attaching to the hottest surfaces as limescale. Within a water heater, limescale will typically form on the heat exchanger or heating element.

Variation in heat exchanger types impact the formation of scale. A direct electric immersion heater aggravates the formation of scale due to the temperature and intensity of the heating element, whereas a heat exchange coil or tube typically exhibits a much lower surface temperature and comparatively less scale formation.

These larger heat exchangers also have a greater capacity to expand and contract, causing scale to flake off as it forms, avoiding detriment to the heat exchanger. Electric immersion heaters with close, tight bundles of rods also expand and contract, but some scale cannot fall clear, becoming trapped in the rods and damaging the element.

Where limescale forms and remains on the heat transfer surface, because it is non-conductive, the surface becomes insulated leading to overheating of the element or heat exchanger. Over time this will cause it to rupture if the heat cannot be dissipated. For electric immersion hot water systems scale formation can happen in hard water areas in as little as six months so should be a major concern.

It is common for protection from limescale formation to be provided by a vigorous cleaning regime, but this option carries both a cost and system downtime that is not acceptable for many school buildings. For this reason, an approach which minimises formation of scale, reducing the need for cleaning, is more advantageous.

For many education sites neither a water softener or a scale inhibitor provides a satisfactory response, whether because of space, maintenance, downtime, or cost. Water softeners require regular maintenance, which if neglected cancels all benefits, and scale inhibitors do reduce scale formation, but do not replace the maintenance regime, nor provide enough protection to ignore possible scale formation. A better option for these sites would be to replace the immersion heaters with a low limescale forming hot water system.

The case for using an electric boiler
An electric boiler, such as the Adveco ARDENT, heats water using immersion heaters located in a small tank within the boiler housing rather than directly installed into a hot water tank. This creates a sealed ‘primary’ loop to an indirect coil in the cylinder, eliminating the common problems of direct electric heating.

The electric boiler heats the same water continuously so there is only a small, finite amount of scale in the system which will not damage the elements. The heat exchanger in the cylinder is a large coil operating at a relatively low (80°C) temperature. Extensive experience with indirect coil use in the UK has shown that scale is not usually a significant problem in these systems. The electric boiler operates at the same efficiency as an electric immersion heater (100%) and so the only overall difference in system efficiency is the minimal pump electrical consumption and a negligible amount of heat loss in the pipework.

An electric boiler hot water system will take up a little more space than an all-in-one electric cylinder, but it has more versatility and requires less clearance for the cylinder. Similarly priced to an immersion heater, an electric boiler system can cost slightly more due to the small amount of additional installation work. But with the cylinder forming significantly less scale, vastly improving reliability and drastically reducing maintenance demands, operational and maintenance savings will quickly offset any additional capital costs.

The electric boiler additionally offers a level of redundancy that is not achieved with a single immersion heater. Scale formation is significantly reduced to a level that scale control can be adopted or not, depending on other building fittings and equipment that may benefit from it.


www.adveco.co

As specifiers look to improve the energy-efficiency of their projects through the greater use of natural light and effective ventilation strategies, leading product manufacturer Passivent can help streamline the process with its Litevent Airstract® rooflight ventilation system.

Suitable for installation on flat or low-pitched roofs, Passivent’s Litevent Airstract has been specifically developed to reduce energy demands in commercial buildings by combining controllable natural ventilation and natural daylighting functions in one unit.

Manufactured from robust aluminum, the unit’s thermally insulated upstand minimises heat loss and its triple skin polycarbonate glazing is available in a clear, diffused or bronze finish.

By enabling controllable ventilation with minimal energy consumption and reducing reliance on artificial lighting, Passivent’s Litevent Airstract is ideally suited for use across a variety of sectors particularly educational and community buildings, where the need to save on both operational carbon emissions and costs is vital.

The unit is resistant to driving and deluge rain, includes a 4mm insect screen in the cowl and is also available in a range of shapes and sizes, including square and rectangular options, offering greater flexibility in terms of designing daylight and ventilation geometric free areas.

With almost 40 years’ experience Passivent can offer a range of technical resources and support to specifiers at early design stage, helping them to achieve the best possible natural ventilation and daylighting strategy and ultimately creating better buildings and healthy spaces.

CLICK HERE to find out more

OR  call 01732 850 770

OR CLICK HERE to email us

 Follow us on LinkedIn to be kept up to date with the latest news.

As schools face a 100% increase in their energy bills (1) , Gilberts is proposing a cost-effective retro-fit way to address the cost whilst improving the educational estate’s carbon footprint and sustainability for the long term.

 

The UK’s leading independent air movement specialist has a solution that is recommended by the Department for Education (2), that ventilates and heats, and costs less than £8/classroom/year to run! (3)

 

The solution is Gilberts’ MFS stand-alone, hybrid ventilation solution. Essentially a natural ventilation unit that can operate solely on fresh air, it includes a quiet, low energy fan to supplement airflow only as conditions demand (such as the recent heatwave).

 

Installed through the external façade or window (or the rooftop), Gilberts’ MFS mixes ‘used’ internal and fresh external air to ventilate the internal space providing free cooling with heat recovery and no risk of cross contamination.

 

A mixing damper within modulates airflow to allow the new, fresh air to mix with the warm exhaust air, thus extracting its heat without the need for an exchanger. The integrated low energy fan energises to blend the internal air, ensuring an even distribution of airflow, controlling CO 2 levels without stratification. The smart Mistrale Control Unit (MCU) gives individual, automatic room control, requiring no occupier input to maintain the comfort levels within.

 

Each MFS unit can be accessorised with an LPHW coil to temper the air to provide Covid compliant ventilation without compromising the internal temperature, or filter boxes to control NOX and other pollutants (F2-7 or F7+).

 

Integrated into the heating system- including heat pumps- Gilberts’ MFS can utilise the warmth generated from LPHW systems to warm or cool the internal space as needed without the need for radiators and all associated ancillary capital costs. By using the MFS for heating there is no need for radiators, further freeing utilisation of the internal space.

 

Free night cooling is standard; a boost mode enables the air within the space to be “purged” for fast redress of air quality and temperature.

 

As a solus ventilation unit, MFS costs as little as £5/room/year at current tariffs to operate. Using it as the means of room heating adds just £2.19/room/year meaning a total ventilation and heating bill/classroom of just £7.19 pa.

 

Its sustainable credentials are further enhanced by its design: the MFS range attains air leakage better than legislative requirements – 5m 3 /HR/m 2 , and a U value of 1W/m 2 /°C. As with all Gilberts’ ventilation solutions, it delivers efficient weather performance via its bespoke louvre system (up to Class A). MFS has also been engineered to minimise embodied carbon.

 

MFS has already been proven to help achieve BREEAM Excellent (3) , contributing points towards Energy and Health & Wellbeing.

 

MFS is cost effective to install, requiring no ductwork. It is therefore quick and easy to retro-fit.

 

Observes Ian Rogers, Gilberts’ Sales Director:

“MFS helps simplify the complex issues school management teams are facing balancing the books as energy prices soar. In one unit, it delivers a highly cost-efficient, sustainable option,creating an internal environment that enhances the health & wellbeing- and therefore productivity- of staff and pupils.”

CLICK HERE to find out more about MFS

 

References

(1) www.tes.com/magazine/news/general/ps63k-month-bills-soaring-energy-prices-hit-schools

(2) Building Bulletin 101

(3) At current tariffs

(4) Oceansgate Plymouth

Two into one does go with advancements to Gilberts’ natural ventilation accessories in line with changes to Building Regulations and guidance. Its latest Series VN-S unit not only addresses noise attenuation into the internal space but is also fully non-combustible.

 

The Series VN-S range of acoustic silencers for natural ventilation provide sound reduction with a choice of five depths (from 100-600mm) between 19- 49dBA, depending on unit size and further influenced by the degree of open free area (from 30-50%). The units can be fitted in air intake and air transfer applications. Thus external noise and/or noise nuisance/breakout between spaces is minimised. Tested to BS EN 10140-2 2010, the silencers are fully compliant with BB93 for acoustics within schools.

 

Importantly for any public or commercial building using natural ventilation, the Series VN-S is also fully non-combustible. This delivers compliance with the latest Building Regulations Approved Document F 2021, particularly with the Guidance’s interaction with Building Regulations Approved Document B. It can therefore form a key part of fire rated transfer applications when used in conjunction with approved fire, intumescent or smoke dampers.

 

“We’re all aware of the growing drive to reduce carbon emissions, and thus the growing specification of natural ventilation in buildings,” says Jonathan Haslam, Gilberts Managing Director. “Building services designers are all too aware of the need to balance those drivers with other considerations, including noise and fire. As the UK’s #1 independent air movement specialist, it is right that we are at the forefront of enhancements that enable designers to ‘tick all the boxes’ as efficiently as possible and have the tools to specify, as easily as possible, a strategy that is Regulatory compliant and delivers an internal environment that optimises occupant productivity and enjoyment.”

 

CLICK HERE for full technical details of Series VN-S

 

Founded 60 years ago, privately owned Gilberts is unique in having its own, on-site (85,000ft2) manufacturing facility, producing engineered solutions, with an in-house test centre. Technical expertise is supported with full in-house testing addressing air movement and combining with computational fluid dynamics CFD).